Susav Shrestha

• LinkedIn • Website • sls7161@tamu.edu, susavlsh10@gmail.com • GitHub • 682-227-7829

EDUCATION

Texas A&M University

Doctor of Philosophy in Computer Engineering. GPA 4.0

College Station, TX

Thesis: Hardware Efficient ML System Design

University of Texas Arlington

Arlington, TX

Bachelor of Science in Electrical Engineering with Honors, Minor in Computer Science. GPA 3.97

May 2021

Est. May 2025

Awards: Cambridge Learners Award 2015, Academic Excellence Award 2016, Dean's List 2018-21, Innovation Award 2021

PROFESSIONAL EXPERIENCE

Texas A&M University

College Station, TX

PhD, Graduate Researcher

Aug 2021– Present

- Led efforts to create more efficient systems for deep learning applications; Neural Information Retrieval (IR).
- Trained a BERT based model for IR using pytorch and knowledge distillation with Recall@1K of 96%.
- Developed a novel embedding processing system with Nvidia GDS & custom CUDA kernels achieving 23% speedup.
- Designed a flexible software prefetcher for Neural IR systems achieving hit rates exceeding 90%, allowing embeddings to be retrieved from storage with near memory latency with 16x less memory footprint.

Samsung Semiconductor Inc.

San Jose, CA

Machine Learning Systems Research Intern

May 2022- Aug 2022

- Developed a novel IR embedding retrieval and processing architecture, leveraging SmartSSD with custom similarity computation kernels (FPGA) to offload similarity processing close to storage.
- Reduced CPU workload by 4x, reduced memory usage by 82% without degrading retrieval quality of the IR model.
- Accelerated neural inference by 64% by compressing the model with knowledge distillation, pruning and quantization.
- Delivered 2 patents applications for efficient Neural Information Retrieval system design during the internship.

University of Texas Arlington

Arlington, TX

Research and Teaching Assistant

May 2019- Aug 2021

- Developed signal processing algorithms to measure dynamic soil properties using a Radar system.
- Teaching assistant for course EE2347; instructor for Lab: Introduction to python and algorithms; graded assignments.

PUBLICATIONS

Shrestha, S., Annapareddy, N., & Li, Z. (2024). ESPN: Memory Efficient Multi-Vector Information Retrieval. (submission under review)

RELEVANT PROJECTS

Machine Learning and Computer Vision (CV) (Python)

- Remodeled and trained the ResNet CNN model with Squeeze/Expand layers with accuracy of 88-92% in CIFAR-10.
- Developed ML algorithms like Naïve Bayes, Decision trees & forests, Linear and Logistic Regression, Neural Networks, K-means clustering from scratch (no libraries) with > 90% accuracy.

Recommendation systems and Natural Language Processing (NLP)

- Built a music recommendation system using BM25, Content-based, Collaborative filtering & Matrix Factorization.
- Fine-tuned LLMs (Full, LoRA) like BERT & GPT-2 models for sentiment analysis, text classification as generation.

Distributed and Parallel Processing Systems (C/C++)

- Implemented Strassen's recursive matrix multiplication algorithm in CUDA and obtained 172x speedup over CPU.
- Tiny Social Network: Developed a scalable, fault tolerant (multiple servers, coordinators) distributed service with follow, unfollow, list, timeline features built on top of gRPC in C++.

SKILLS AND COURSES

Relevant Coursework: Advance Computer Architecture, Parallel Computing, Distributed Processing, Deep Learning, Machine Learning, NLP, Information Retrieval, Memory & Storage Systems, Operating Systems, Advanced Algorithms. Technical: C/C++, Python, Java, CUDA, MATLAB, OpenCL, OpenMP, Pthreads, MPI, Pytorch, Scikit-learn, gRPC, Hadoop, Azure, AWS, Spark, Verilog, VHDL, Vitis/Vivado HLS, Object Oriented Programming (OOP), GIT, Linux.